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An artificial intelligence algorithm for prostate cancer 
diagnosis in whole slide images of core needle biopsies: 
a blinded clinical validation and deployment study
Liron Pantanowitz, Gabriela M Quiroga-Garza, Lilach Bien, Ronen Heled, Daphna Laifenfeld, Chaim Linhart, Judith Sandbank, 
Anat Albrecht Shach, Varda Shalev, Manuela Vecsler, Pamela Michelow, Scott Hazelhurst, Rajiv Dhir 

Summary
Background There is high demand to develop computer-assisted diagnostic tools to evaluate prostate core needle 
biopsies (CNBs), but little clinical validation and a lack of clinical deployment of such tools. We report here on 
a blinded clinical validation study and deployment of an artificial intelligence (AI)-based algorithm in a pathology 
laboratory for routine clinical use to aid prostate diagnosis.

Methods An AI-based algorithm was developed using haematoxylin and eosin (H&E)-stained slides of prostate CNBs 
digitised with a Philips scanner, which were divided into training (1 357 480 image patches from 549 H&E-stained 
slides) and internal test (2501 H&E-stained slides) datasets. The algorithm provided slide-level scores for probability 
of cancer, Gleason score 7–10 (vs Gleason score 6 or atypical small acinar proliferation [ASAP]), Gleason pattern 5, 
and perineural invasion and calculation of cancer percentage present in CNB material. The algorithm was 
subsequently validated on an external dataset of 100 consecutive cases (1627 H&E-stained slides) digitised on an 
Aperio AT2 scanner. In addition, the AI tool was implemented in a pathology laboratory within routine clinical 
workflow as a second read system to review all prostate CNBs. Algorithm performance was assessed with area under 
the receiver operating characteristic curve (AUC), specificity, and sensitivity, as well as Pearson’s correlation coefficient 
(Pearson’s r) for cancer percentage.

Findings The algorithm achieved an AUC of 0·997 (95% CI 0·995 to 0·998) for cancer detection in the internal test set 
and 0·991 (0·979 to 1·00) in the external validation set. The AUC for distinguishing between a low-grade (Gleason 
score 6 or ASAP) and high-grade (Gleason score 7–10) cancer diagnosis was 0·941 (0·905 to 0·977) and the AUC for 
detecting Gleason pattern 5 was 0·971 (0·943 to 0·998) in the external validation set. Cancer percentage calculated by 
pathologists and the algorithm showed good agreement (r=0·882, 95% CI 0·834 to 0·915; p<0·0001) with a mean 
bias of −4·14% (−6·36 to −1·91). The algorithm achieved an AUC of 0·957 (0·930 to 0·985) for perineural invasion. 
In routine practice, the algorithm was used to assess 11 429 H&E-stained slides pertaining to 941 cases leading to 
90 Gleason score 7–10 alerts and 560 cancer alerts. 51 (9%) cancer alerts led to additional cuts or stains being ordered, 
two (4%) of which led to a third opinion request. We report on the first case of missed cancer that was detected by the 
algorithm.

Interpretation This study reports the successful development, external clinical validation, and deployment in clinical 
practice of an AI-based algorithm to accurately detect, grade, and evaluate clinically relevant findings in digitised 
slides of prostate CNBs.

Funding Ibex Medical Analytics.

Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
Adenocarcinoma of the prostate is the second most 
common cancer diagnosed in men,1 with more than 
1 million newly diagnosed cases of prostate cancer an­
nually. Hence, prostate specimens are frequently encoun­
tered in surgical pathology practice. Today, the 
histopathological assessment of biopsy tissue is the 
mainstay of diagnosing prostate cancer, which includes 
core needle biopsy (CNB) and, if warranted, surgical resec­
tion. For most pathology laboratories, the current method 
of rendering a tissue diagnosis involves light microscopic 

examination of haematoxylin and eosin (H&E)-stained 
tissue sections.2 Due to changing guidelines, there has 
been a dramatic increase in the number of CNBs reviewed 
per case over the past decade. Coupled with an increase in 
overall cancer incidence and growing shortage of path­
ologists worldwide,3 there is an emerging need to develop 
automated, artificial intelligence (AI)-based tools to 
support pathologists. Management of afflicted men hinges 
on diagnosis and on the Gleason grade of their prostate 
adenocarcinoma for disease prognosis. Reliably diagnosing 
and correctly grading prostate adenocarcinoma in CNBs is 
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challenging because of potential cancer mimics and the 
presence of only small foci of well differentiated adeno­
carcinoma. Hence, for an automated tool to be adopted 
into practice, it will need to have clinical grade accuracy.

Recent technological and regulatory advances in whole 
slide imaging have accelerated the adoption of digital 
imaging in pathology.4 Now that pathology departments 
have several commercial digital pathology platforms 
available for diagnostic work, there is interest in lever­
aging AI tools. Several publications have shown the 
feasibility of developing AI-based algorithms to analyse 
histopathology images, specifically for prostate cancer.4–8 
However, there is minimal literature clinically validating 
such algorithms using large, independent blinded stud­
ies. Furthermore, routine clinical deployment of such 
deep learning systems in pathology laboratories has not 
been reported.

The aim of this study was twofold. The first aim was to 
do a blinded clinical validation of an AI-based algorithm 
that extended beyond just prostate adenocarcinoma 
detection and Gleason grading, by also detecting clin­
ically meaningful features such as tumour extent and 
perineural invasion. The second aim was to deploy this 
system in a pathology laboratory for routine clinical use.

Methods
Study design
The study encompasses three key steps: (1) development 
and testing of an AI-based algorithm for prostate CNBs; 
(2) blinded algorithm validation in an external, independent 

dataset; and (3) algorithm deployment in routine clinical 
use. Each of these steps is described below.

Institutional review board approval was obtained for this 
study (University of Pittsburgh Institutional Review Board 
PRO18030439; Maccabi Ethics Helsinki Committee 
0153-16-ASMC and 0081-18-BBL; and University of the 
Witwatersrand, Johannesburg Human Research Ethics 
Committee [Medical] M191003).

Algorithm development
Training and internal test datasets came from prostate 
CNBs retrieved from the archive of the Pathology 
Institute at Maccabi Healthcare Services’ centralised 
laboratory (MegaLab) in Israel. H&E-stained slides 
were scanned using a Philips IntelliSite Scanner 
(Philips Digital Pathology Solutions; Best, Netherlands) 
at 40× magnification (resolution of 0·25 μm/pixel).

The algorithm that we developed, whose core tech­
nology is based on multilayered convolutional neural 
networks (CNNs) that were specifically designed for 
image classification tasks, analyses a whole slide image 
in three consecutive steps: tissue detection, classification, 
and slide-level analysis. Briefly, the first step uses a 
Gradient Boosting classifier, trained on thousands of 
image patches, to distinguish between tissue and back­
ground areas within the slide. After this, an ensemble of 
three CNN-based models is run on all tissue areas.

The models were trained on 1 357 480 labelled image 
patches that were extracted from manual annotations on 
549 slides, selected from more than 65 000 slides in the 

Research in context

Evidence before this study
We searched PubMed and Google Scholar on Feb 20, 2020, 
with the keywords “artificial intelligence” OR “deep learning” 
OR “machine learning” AND “pathology” AND “prostate 
cancer”.  The advanced search was limited to the English 
language. This search rendered 185 results, but only a few 
relevant studies retrieved employed image analysis for cancer 
detection or artificial intelligence (AI)-based Gleason grading 
performed on whole slide images. Additional relevant articles 
were reviewed from the publications’ references. Despite 
much discussion in the field, there were few studies actually 
validating high performance of these algorithms, especially 
in large independent blinded studies. Most studies report 
performance on their internal test sets and only on few 
external validation sets. In the context of supporting clinical 
decisions, the need for an AI-based tool that combines high 
accuracy levels validated on large independent cohorts that 
incorporates clinically meaningful features is still unmet. 
Furthermore, the technical feasibility of deploying such 
a system in routine clinical workflow has not been addressed 
before. To the best of our knowledge, no report regarding 
clinical deployment of an AI system embedded into routine 
pathology practice has yet been published.

Added value of this study
We report the validation and performance of an AI-based 
prostate histopathology algorithm that extends beyond just 
cancer detection and grading, but also measures cancer 
proportion and the detection of perineural invasion to meet 
clinical reporting needs. Additionally, we describe the clinical 
deployment of such an algorithm in routine clinical practice, 
where implementation of a second read system showed early 
utility in preventing a missed prostate cancer diagnosis.

Implications of all the available evidence
An accurate, robust, and validated AI-based algorithm to detect, 
grade, and automatically impart clinically relevant diagnostic 
parameters regarding prostate adenocarcinoma offers an 
important tool for computer-assisted diagnosis in routine 
pathology practice. Demonstration of the technical feasibility 
for deploying such an AI-based system in the routine clinical 
workflow of a pathology laboratory elevates existing discussion 
of AI-based tools in pathology to a practical level, revealing how 
computational pathology can lead to improved efficiency, 
accuracy, consistent diagnoses, and better patient management.
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archive on the basis of various criteria, such as reported 
Gleason grade and rare findings. Annotations were done 
by three senior pathologists, each with 20–40 years of 
experience. The classification step yields predictions 
(probabilities) for every area in the slide belonging to 
each of 18 predefined classes, such as Gleason pattern 3 
cancer, normal gland, and chronic inflammation 
(appendix p 6). Finally, the third step combines the 
18 probability heatmaps (appendix p 6) and calculates 
slide-level scores for chosen endpoints.

Low concordance in Gleason scoring between patho­
logists9 confounds the ability to obtain robust ground 
truth. Therefore, we focused on groupings of clinical signi­
ficance rather than the full range of individual Gleason 
scores, choosing the following five endpoints: presence of 
cancer (primary endpoint), Gleason score 7–10 (including 
scores 3 + 4, 4 + 3, 4 + 4, 3 + 5, 5 + 3, 4 + 5, 5 + 4, and 5 + 5) 
versus Gleason score 6 (3 + 3) or atypical small acinar 
proliferation (ASAP), Gleason pattern 5 (including scores 
3 + 5, 5 + 3, 4 + 5, 5 + 4, and 5 + 5), perineural invasion, and 
calculation of the percentage of cancer present in CNB 
material. The Gleason endpoints represent clinically 
relevant endpoints for disease management (Gleason 
score 7–10) and aggressive cancers (Gleason pattern 5).9 
More details on algorithm development are provided in 
the appendix (pp 2–3).

Algorithm testing
To evaluate the accuracy of the prostate algorithm, its 
output was compared with ground truth on a large 
collection of whole slide images independent from the 
training set. The internal test dataset included all 
213 consecutive prostate CNBs (2576 H&E-stained 
slides) received at MegaLab from March 1 to June 30, 
2016, which were also digitised with a Philips scanner. 
Associated immunohistochemistry slides from these 
cases were used to review cases and establish ground 
truth. 51 (2·0%) H&E-stained slides were not scanned 
due to limiting slide physical conditions (eg, broken 
glass or missing slides), and 24 (0·9%) H&E-stained 
slides that had been chosen previously for algorithm 
training as part of the randomly selected CNBs were 
filtered out. Thus, the internal test was run on 2501 H&E-
stained slides from 210 cases. Ground truth was estab­
lished at the slide level on the basis of the pathologists’ 
diagnosis, either from the original pathology report (for 
benign cases) or after review by two senior pathologists 
with 40 years (JS) and 20 years (AAS) of experience for 
cases where there was a diagnosis of cancer in the report.

External validation
External validation of the algorithm was done at the 
University of Pittsburgh Medical Center (UPMC) using a 
validation dataset with different pre-imaging and scan­
ning parameters. Glass slides at UPMC were scanned at 
40× magnification (0·25 µm/pixel resolution) using an 
Aperio AT2 scanner (Leica Biosystems; Buffalo Grove, IL, 

USA). UPMC diagnoses are reported per part, where a 
part is one of the three biopsy regions (upper, mid, or 
base) in one of the bilateral prostate lobes. One part is 
often represented in multiple whole slide images.

To prepare the algorithm for external validation, we used 
a set of 32 prostate CNB cases (selected from cases 
occurring between August, 2014, and January, 2018), 
comprising 159 parts, to calibrate the algorithm for 
UPMC-specific whole slide image attributes (eg, scanner 
and staining) and to verify the technical validity of the 
whole slide images (eg, file format and resolution). This 
set included diagnoses with cancers of various Gleason 
scores (appendix p 5), high-grade prostatic intraepithelial 
neoplasia, inflammation, and atrophy. We divided the set 
into a calibration set (also known as a tuning set) and an 
internal test set. The calibration set comprised 44 parts, 
selected according to criteria used in previous training 
slides (appendix pp 2–3), that were manually annotated by 
senior pathologists (JS, AAS). The remaining 115 parts 
that were not annotated were used for internal validation.

A separate archival dataset of whole slide images that 
included 100 consecutive cases of prostate CNB cases 
previously received and signed out (ie, formally diagnosed 
and reported) by the Genitourinary Center of Excellence 
at UPMC served as an independent, external, blinded 
validation set. Each case included all associated H&E-
stained slides, giving a total of 1627 H&E-stained whole 
slide images. The 100 cases were organised into 379 parts 
with an average of four slides per part (typically deeper 
H&E-stained section levels of the same cores). All study 
data were anonymised and metadata for each case 
(eg, patient demographics and immunohistochemistry 
results) were recorded. Patients’ age distribution, percent­
age of cancer cases, and Gleason score distribution are 
summarised in the appendix (p 7).

The algorithm was applied to the external, blinded 
validation set. Data were subsequently unblinded and the 
results of the algorithm compared with the ground truth 
diagnoses. Assessment of performance was done on a 
per-part level. The performance on detection of the five 
endpoints was assessed.

Ground truth
Ground truth was established on the basis of the original 
UPMC pathology report using the diagnosis rendered by 
one of three genitourinary subspecialty pathologists 
before this study. To address the potential for discordance 
among pathologists, and to ensure accurate assessment 
of algorithmic results, a subset of the parts in the 
external validation set were chosen for ground truth 
ascertainment. Ground truth ascertainment was done 
on four of the features assessed in the external validation 
set (ie, cancer detection, Gleason score 7–10, Gleason 
pattern 5, and perineural invasion); cancer percentage 
was not subject to discrepancy analysis owing to the 
protocol-specific nature of discrepancies. The subset of 
parts selected for ground truth ascertainment was based 

See Online for appendix
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on likelihood of affecting the performance metrics of the 
algorithm. Thus, 10% of the highest-scoring negative 
parts (eg, parts reported as benign in the pathology 
report) and 5% of the lowest-scoring positive parts 
(eg, parts reported as positive for cancer in the pathology 
report) in the external validation set were sent for review 
by two independent pathologists with genitourinary 
pathology expertise who did not previously diagnose any 
of the cases, one from UPMC (GMQ-G), and one from 
Maccabi (JS). Their review was done in a blinded manner 
using the same digital slides and image viewer to ensure 
uniformity between reviewers. Ground truth was based 
on consensus between the two pathologists. For parts 
where there was an initial discrepancy between the 
two pathologists, a third pathologist (RD) with genito­
urinary pathology expertise blindly reviewed the slides 
and the majority vote was used as the final consensus 
diagnosis. 65 parts were reviewed (appendix p 7).

Deployment for routine clinical use: second read 
application
Maccabi Healthcare Services is a large health-care 
provider in Israel with a centralised pathology institute 
with approximately 120 000 surgical pathology cases an­
nually, including around 700 prostate CNB cases reviewed 
by three genitourinary subspecialty pathologists out of 
a team of 12 senior pathologists. Around 40% of these 
CNBs are diagnosed with cancer. Galen Prostate (Ibex 
Medical Analytics), the product based on the prostate 
algorithm, has been implemented in Maccabi Pathology 

Institute since March, 2018, as a second read system—
namely, a quality control application that reviews whole 
slide images of all prostate CNBs (figure 1). Slides were 
scanned using a Philips IntelliSite Scanner and processed 
via a server with four graphics processing units. With this 
setup, the algorithm was run in parallel to the pathologists’ 
routine workflow. Triggers were used to alert pathologists 
in the event there was a case with a discrepancy between 
their diagnosis and the output of the algorithm. The 
system generated alerts for slides with a high algorithmic 
cancer score that were diagnosed as benign by the 
pathologist, and for slides with a high Gleason score 
(ie, 7–10) that were diagnosed as Gleason score 6 by the 
pathologist. The alert threshold was set to correspond to a 
specificity of 90% (see appendix pp 3–4 for threshold 
rationale). Pathologists were able to view the case list with 
alerts and do a second review, specifically focused on the 
region that triggered the alert outlined by heatmaps in 
the second read slide viewer. The system took 1 month to 
set up, including automatic export of slides from the 
Philips Image Management System to Galen Prostate. A 
training session was held for each user and for the 
technician scanning the slides.

Statistical analysis
Sample size for 80% power with two-sided 5% level of 
significance was calculated on the basis of test 
performance (appendix p 4). Area under the receiver 
operating characteristic curve (AUC) was calculated with 
95% Wald CIs using the continuous score. Specificity 

Figure 1: Overview of the algorithm and clinical deployment of the Galen Prostate second read system
AI=artificial intelligence. WSI=whole image slide. PIN=prostatic intraepithelial neoplasia.
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and sensitivity at multiple cutoff points were calculated 
for each feature and are presented with two-sided 
95% CIs. The CIs were calculated from a generalised 
estimating equation model using the GENMOD 
procedure in SAS (dist=bin) using the ilink option in the 
Lsmeans statement. This was done to accommodate the 
within-subject correlation due to repeated measurements. 
Pearson’s correlation coefficient is presented for cancer 
percentage concordance between the algorithm and 
pathology report. The mean bias (difference between 
cancer percentage) and its SD are presented as further 
measures of concordance, as well as the Bland-Altman 
95% limits of agreement (presented with 95% CIs). We 
used SAS version 9.4 for all analyses.

Role of the funding source
The funder of the study supported study design and 
writing of the report. LP had full access to all the data in 
the study and had final responsibility for the decision to 
submit for publication.

Results 
Patient characteristics in the study cohorts are shown in 
the appendix (pp 7, 11) and reflect the representative 
population undergoing prostate CNBs in Israel and the 
USA (appendix p 3).

The AUC for cancer detection was 0·997 (95% CI 
0·995–0·998) on the internal test set (appendix p 7) and 
0·991 (0·979–1·00) on the UPMC external validation 
set (appendix pp 8, 11; table 1). Additional performance 
metrics in internal test and external validation sets are 
shown in table 1.

Ground truth ascertainment for cancer versus benign 
diagnosis resulted in algorithm-driven diagnostic cor­
rections for seven parts in the external validation dataset: 

four parts were corrected from benign to cancer (two 
parts) or ASAP (two parts; appendix p 13) and three parts 
were corrected from cancer to benign (one part) or ASAP 
(two parts). At the case level, one case that was originally 
diagnosed as ASAP was changed to cancer (figure 2B).

Cancer percentage correlation was computed on 
126 parts diagnosed as cancer in UPMC pathology 
reports. Figure 2A shows an example of the algorithm 
results. There was high correlation between the cancer 
percentage reported by pathologists with the percentage 
computed by the algorithm (Pearson’s r=0·882, 95% CI 
0·834 to 0·915; p<0·0001; appendix p 12). The mean 
bias was −4·14% (95% CI −6·36 to −1·91), showing that, 
on average, the algorithm underestimates the cancer 
percentage by 1·9–6·3% (appendix p 8). The Bland-
Altman 95% limits of agreement, which show the 
difference between reported and calculated percentage, 
are −28·6% (95% CI −33·9 to −23·3; algorithm lower) 
to 20·3% (15·0 to 25·7; algorithm higher). Examining 
discrepancies between the algorithm and the pathologist 
in cancer percentage reveals that these variances stem 
largely from specific calculation protocols, rather than 
algorithmic inaccuracies—eg, the decision to include 
small benign areas between cancer foci in the calculation 
(appendix p 14).

When assessing the algorithm’s performance on 
Gleason grading, the AUC for distinguishing between 
ASAP or Gleason score 6 versus higher Gleason scores 
was 0·941 (95% CI 0·905–0·977) and 0·971 (0·943–0·998) 
for detecting any Gleason pattern 5 in a CNB (table 1). 
Additional performance metrics on graing performance 
are summarised in table 1 and in the appendix (p 9).

Ground truth ascertainment resulted in algorithm-
driven corrections of four parts from Gleason score 6 to 
Gleason score 7–10 (figure 2C), and two parts from Gleason 

Number of slides (internal test) and 
parts (external validation)

AUC 
(95% CI)

Specificity 
(95% CI)

Sensitivity 
(95% CI)

PPV NPV

Internal test (Maccabi Healthcare Services)

Benign vs cancer 2501: 1957 benign and 490 cancer* 0·997 
(0·995–0·998)

90·14% 
(87·76–92·09)†

99·59% 
(98·39–99·90)

71·7% 99·9%

External validation (UPMC)

Benign vs cancer 355: 225 benign and 130 cancer‡ 0·991  
(0·979–1·00)

97·33% 
(94·43–98·74)

98·46% 
(94·06–99·61)

95·5% 99·1%

Gleason score 6 or ASAP 
vs Gleason score 7–10§

151: 73 Gleason score 6 or ASAP
and 78 Gleason score 7–10

0·941 
(0·905–0·977)

90·41% 
(78·92–95·96)

85·9% 
(75·72–92·25)

90·5% 85·7%

ASAP or Gleason pattern 3 
or 4 vs Gleason pattern 5¶

151: 131 ASAP or Gleason pattern 3  
or 4 and 20 Gleason pattern 5

0·971 
(0·943–0·998)

90·84% 
(84·18–94·87)

85% 
(51·24–96·83)

58·6% 97·5%

Cancer without vs with 
perineural invasion

154: 108 without perineural invasion 
and 46 with perineural invasion||

0·957 
(0·930–0·985)

90·74% 
(83·10–95·13)

86·96% 
(74·47–93·84%)

80% 94·2%

AUC=area under the receiver operating characteristic curve. PPV=positive predictive value. NPV=negative predictive value. UPMC=University of Pittsburg Medical Center. 
ASAP=atypical small acinar proliferation. *34 slides with ASAP and 20 slides for which pathologists did not reach a conclusion were excluded. †Selected to reflect 
pathologists’ review using 10% of slides for quality control. ‡Parts that were diagnosed as ASAP by the pathologists were excluded. §Gleason score 7–10 includes Gleason 
scores 3 + 4, 4 + 3, 4 + 4, 3 + 5, 5 + 3, 4 + 5, 5 + 4, and 5 + 5. ¶ASAP or Gleason pattern 3–4 refers to parts not having Gleason pattern 5—ie, diagnosed as ASAP or Gleason score 
3 + 3, 3 + 4, 4 + 3, or 4 + 4. Gleason pattern 5 includes Gleason scores 3 + 5, 5 + 3, 4 + 5, 5 + 4, and 5 + 5. ||154 parts include: 151 parts with adenocarcinoma and Gleason score, 
two parts with other cancer, and one part where a consensus was not reached about the Gleason score during ground truth ascertainment.

Table 1: Algorithm performance
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score 7–10 to Gleason score 6. One part was corrected from 
Gleason score 7 to Gleason grading with pattern 5 present 
(figure 2D).

The algorithm detected perineural invasion with an AUC 
of 0·957 (95% CI 0·930–0·985), further summarised in 
table 1 and in the appendix (p 9).

Ground truth ascertainment resulted in algorithm-
driven corrections for two parts from negative to positive 
for perineural invasion (figure 2E). For one part that was 

positive for perineural invasion in the report, it was 
determined that perineural invasion was absent.

Discrepancies between the two reviewing pathologists 
for 65 parts that were sent for ground truth ascertainment 
were observed for all endpoints analysed, with major 
discrepancies in Gleason grading (nine [14%] parts for 
Gleason grade group difference >1 and a total of 24 [37%] 
parts with differences in Gleason grading) and perineural 
invasion diagnosis (nine [14%] parts), followed by 
distinguishing between benign tissue and cancer (six [9%] 
parts) and between ASAP and cancer (two [3%] parts). 
Misdiagnoses by pathologists occurred for 17 parts and six 
cases, including one case in which cancer was misdiag­
nosed as ASAP and five cases where the revised diagnosis 
changed the Gleason score, with potential clinical 
significance (table 2).

Between March, 2018, and November, 2019, 941 cases 
(11 429 H&E-stained slides) were processed by the second 
read system at the Maccabi Pathology Institute. Cancer 
alerts were raised for an average of 10·9% of the slides 
belonging to cases diagnosed by pathologists as benign, 
with 1·35 cancer alerts (slides) per such case. Of 1451 slides 
from 115 cases diagnosed as Gleason score 6=3 + 3, the 
system issued 90 (6·2%) Gleason score 7–10 alerts and 
560 (38·6%) cancer alerts. Upon pathologist review of the 
cancer alerts, 509 (90·9%) alerts required no substantial 
effort: most areas that triggered the alerts were identified 
as either atrophic glands or crushed glands, consistent 
with an irregular feature that mimics malignant glands. 
51 (9·1%) alerts led to additional cuts or stains being 
ordered, two (4%) of which led to a third opinion request. 
Alerts were focused on specific areas, meaning that review 
time was minimal, resulting overall in approximately 1% 
of the pathologist’s time.

We report on the first case with missed cancer in a CNB 
detected by the system, which occurred immediately 
following deployment. The biopsy from a 55-year-old 
patient was diagnosed by the pathologist as benign with 
foci of acute and chronic inflammation and atrophic 
changes in both prostate gland lobes. The second read 
system raised alerts for the presence of cancer in three 
slides within the case with a high probability score for 
cancer (>0·99; figure 3). Subsequent re-examination by the 
pathologist, additional recut sections, and an immuno­
histochemistry stain for CK903 were done, and the 
diagnosis was revised to minute foci of adenocarcinoma of 
acinar type with Gleason score 6 in the right lobe core 
biopsy. Three cores were reported as involved, and the 
estimated percentage of tumour in prostatic tissue was 
less than 5%. The left core biopsy diagnosis remained 
unchanged (ie, negative). As a result, this patient was 
included in an active surveillance protocol and his prostate-
specific antigen level taken 3 months after this biopsy was 
above normal at 5·56 ng/mL and continued to rise during 
the surveillance to 7·93 ng/mL. Additional missed cancers 
were identified during the clinical deployment, details of 
which were not provided by the laboratory.

Figure 2: Examples of diagnoses after review
All images are stained with haematoxylin and eosin and displayed at 0·6× (16·67 μm/pixel; panel A) and 
20× (0·50 μm/pixel; panels B–E) magnification. (A) Example of cancer proportion reported by pathologists versus 
calculations performed by the algorithm in the external validation dataset. Prostate CNBs (part 662_6) with the 
cancer heatmap (where blue shows low probability and red shows high probability) displayed. Tumour proportion 
calculated by the algorithm was 33% compared with 40% reported by a pathologist. Panels B–E provide examples 
of revised diagnoses. (B) Prostate CNB (part 665_1) with cancer heatmap (where blue shows low probability and 
red shows high probability) originally diagnosed as benign that was subsequently changed to cancer with Gleason 
score 6=3 + 3 after review. The case diagnosis was updated from ASAP to cancer. (C) Prostate biopsy (part 598_5) 
with a Gleason pattern heatmap (where blue shows Gleason pattern 3, yellow shows Gleason pattern 4, and red 
shows Gleason pattern 5) that was updated from Gleason score 6=3 + 3 to Gleason score 7 (there was no 
concordance between reviewers as to 3 + 4 vs 4 + 3). (D) Prostate biopsy (part 606_1) with a Gleason pattern 
heatmap (where blue shows Gleason pattern 3, yellow shows Gleason pattern 4, and red shows Gleason 
pattern 5). This biopsy part and case were updated from Gleason score 7=3 + 4 to Gleason score 8=3 + 5. 
(E) Example of a prostate CNB (part 686_4) that was updated to positive for perineural invasion after review. 
The colours represent the original staining. CNB=core needle biopsy. ASAP=atypical small acinar proliferation.

A

C

E

B

D

False positive False negative

Adenocarcinoma 1 benign, 2 ASAP 2 cancer, 2 ASAP

Gleason score 7–10 2 4

Gleason pattern 5 0 1

Perineural invasion 1 2

Data are number of parts. ASAP=atypical small acinar proliferation.

Table 2: Pathologists’ misdiagnoses identified by the algorithm
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Discussion
We report the development of a medical-grade AI-based 
algorithm for evaluating digitised prostate CNB slides, 
and successful deployment of this AI tool in routine 
clinical practice. We show high accuracy of the algorithm, 
based on a large, blinded, external validation dataset, to 
identify and quantify prostate cancer, differentiate 
between low-grade and high-grade tumours, and detect 
perineural invasion in CNBs. To the best of our knowledge, 
this is the first report of an AI-based algorithm that 
extends beyond cancer detection and grading of prostatic 
cancer in histopathological images, and one of the first 
instances of clinical use of an AI-based algorithm in 
routine pathology practice. We are aware of one other 
study where implementation of an AI-based algorithm for 
the automatic detection of prostate cancer in a pathology 
laboratory was reported,10 but no outcomes were 
published.

AI algorithms and models are typically developed from 
data that are assumed to be representative. Overfitting is 
a common problem, where despite good performance 
on training data or on test data similar to the training 
data, performance deteriorates on novel data. Multiple 
strategies exist to avoid overfitting (eg, cross-validation 
or bootstrapping), but true performance can only be 
determined through blinded studies with external data­
sets. The demonstration herein of high performance of 
the algorithm using an external, geographically distinct, 
blinded dataset is crucial for true evaluation of the 
performance and utility of the algorithm. To our know­
ledge, very few studies have attempted such validation, 
with narrower applications and significantly lower 
performance.

Deployment of such an AI tool in clinical practice is 
timely, not only because prostate adenocarcinoma is one 
of the most common cancers seen in men, but also due 
to the substantial increase in pathologists’ workload as 
cancer cases rise, combined with increased complexity of 
histopathological assessment with changes in guideline 
recommendations. Unfortunately, there is a concomitant 
decline in the pathology workforce. When adjusted by 
new cancer cases per year, the workload per US pathol­
ogist has risen by 41·73%3 and this gap is growing, 
potentially resulting in delayed cancer diagnoses and 
diagnostic errors. Reports of missed prostate cancer and 

a lack of concordance with Gleason grading have been 
well documented,11 especially when these diagnoses are 
rendered by general pathologists instead of subspecialist 
urological pathologists.12–15 Raciti and colleagues16 showed 
that in a non-clinical setting, AI can increase the detec­
tion of prostate cancer in whole slide images of CNBs. In 
our study, the two pathologists who participated 
disagreed on cancer detection in 9% of biopsy parts and 
on Gleason grade grouping in 37% of biopsy parts (14% 
major disagreement). Overall, 17 misdiagnosed parts and 
six misdiagnosed cases in the UPMC dataset were 
identified in this study, including misdiagnoses in cancer 
detection and grading, as well as detection of perineural 
invasion, some of which might have affected treatment. 
In a pathology laboratory in France, the same second 
read system identified 12 misdiagnosed cases, including 
missed high-grade cancers.17 Several pathology practices 
have established a second review process for quality 
control purposes on a portion (eg, 10%) of cases to thwart 
misdiagnoses.18 Although useful, this additional quality 
control step, when done manually, further adds to a path­
ologist’s workload, and therefore is typically practised 
rarely. AI tools, as shown in this study, can be leveraged 
to help to automate this safety net task.19,20 Indeed, the 
deployment described here of Galen Prostate as a second 
read application is the first instance of 100% quality 
control of prostate CNBs in a laboratory, drastically di­
minishing the chances for misdiagnoses with negligible 
impact on a pathologist’s workload.

Previous publications of prostate cancer algorithms 
devoted to analysing histopathology images have rep­
orted lower or similar performance characteristics for 
cancer detection to those obtained herein (table 3).6,8,21–25 
However, many previous publications on this topic 
report on algorithms limited to just one task (ie, narrow 
AI) and provide performance metrics verified mostly on 
internal test sets. For example, several researchers have 
explored the use of machine and deep learning 
techniques to provide just Gleason grading.23,24,26,27 By 
contrast, our study reports high performance charac­
teristics of a multifunction algorithm for prostate CNB 
interpretation (ie, cancer detection, grading, evaluation 
of tumour extent, and perineural invasion), assessed on 
an independent external dataset. The algorithm in our 
study was able to simultaneously evaluate CNBs for 

Figure 3: Missed cancer case originally diagnosed as benign
Images in panels A and B are stained with haematoxylin and eosin. All images are displayed at 10× (1 μm/pixel) magnification. (A) Prostate biopsy showing abnormal 
glandular focus. (B) Algorithm heatmap detecting cancer with high probability (red areas) in the same small focus. (C) Corresponding area on the immunohistochemistry 
slide (CK903) with absent basal cells confirming the diagnosis of adenocarcinoma. 

A CB
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perineural invasion, a feature not reported by other 
researchers but one that is well known to have clinical 
and prognostic significance.28 Notably, perineural 
invasion does not lend itself to some of the published 
AI-based algorithms, as it is typically very small (unlike 
adenocarcinoma, which sometimes covers a large 
fraction of the tissue core) and relatively uncommon. 
Furthermore, cancer percentage in CNBs calculated by 
our algorithm highly correlated with the proportion 
that was estimated by pathologists and can be further 
tailored to mimic the protocol for calculating cancer 
percentage for each laboratory. Ström and colleagues21 
reported slightly lower correlation between their 
algorithm and pathologists when calculating tumour 
length in prostate biopsies compared with our 
algorithm for cancer percentage. This is not surprising, 
as the quantitative determination of prostate cancer 
(eg, tumour volume) in CNBs is controversial and 
fraught with subjectivity between pathologists.29 
Algorithms that can take these measurements offer 
laboratories an opportunity to harmonise clinical 
practice among pathologists.

Our study has several limitations. Gleason grading 
for prostate cancer is a well established grading system 
globally adopted for the treatment and prognosis of 
prostate cancer, and is considered the gold standard in 
the field. Still, discordance between pathologists in 
Gleason grading is widely acknowledged,11 and thus a 
true and agreed-upon ground truth is sometimes 
difficult to reach. The AI-based algorithm employed in 
this study was trained using annotations from multiple 
independent pathologists and thus the computed 

Gleason score of the deep-learning algorithm is 
expected to be generalisable, consistent with the high 
performance shown here. However, true and objective 
performance metrics can ultimately only be determined 
using a combination of a committee of expert 
pathologists for grading and long-term outcome data, 
which would also allow for individual grade assessment 
rather than the groupings used here. Ongoing studies 
are assessing these questions and are also focused on 
assessing performance characteristics of additional 
features computed by the algorithm, including areas 
corresponding to certain Gleason scores or percentage 
of certain Gleason scores within cancerous tissue, 
detection of high-grade prostatic intraepithelial neo­
plasia, and inflammation. These, as well as the 
performance of the algorithm in detection of rare 
variants of adenocarcinoma, are important features of 
the algorithm that were beyond the scope of the current 
study. Still, the utility of the study for wider deployment 
is evident, as we report here on six patient-level mis­
diagnoses at UPMC, including clinically significant 
misdiagnoses such as involvement of higher Gleason 
patterns.

Implementation of AI-based tools for routine clinical 
work carries practical considerations of generalisability, 
infrastructure requirements, and throughput. Although 
algorithms had been shown to have low performance for 
whole slide images of different file formats acquired by 
different scanners,30 we were able to show equally high 
performance when slides were scanned using a Philips 
(clinical deployment dataset) and Leica (external vali­
dation dataset) scanner, although more work, such as 

Dataset dimension Cancer vs benign accuracy Gleason grading accuracy

Performance assessed on external validation datasets

Campanella et al (2019)6 12 727 slides AUC 0·932 Not available

Bulten et al (2020)8 245 tissue microarray cores* AUC 0·98 AUC 0·87 for benign or Gleason grade group 1 
vs Gleason grade group 2–5 
AUC 0·86 for benign or Gleason grade 
group 1–2 vs Gleason grade group 3–5

Nir et al (2019)7 230 slides from 56 prostatectomy    
cases

AUC 0·75 Not available

Ström et al (2020)21 330 cores from 73 cases AUC 0·986 Cohen’s κ 0·7

Current study 1627 slides from 100 cases AUC 0·991 overall 
AUC 0·957 for perineural invasion†

AUC 0·941 for ASAP or Gleason score 6 vs 
Gleason score 7–10 
AUC 0·971 for ASAP or Gleason pattern 3–4 vs 
Gleason pattern 5

Performance assessed only on internal test sets

Arvaniti et al (2018)22 245 tissue microarray cores* Not available Cohen’s κ 0·55

Nagpal et al (2019)23 1226 slides Not available AUC 0·7

Nir et al (2018)24 86 tissue microarray cores from 
60 cases

AUC 0·85; sensitivity 91·3%; 
specificity 84%

Accuracy 79%; sensitivity 75·9%; 
specificity 77·9%

Lucas et al (2019)25 96 sections from 38 cases Accuracy 92%; sensitivity 90%; 
specificity 93%

Accuracy 90%; sensitivity 77%; specificity 94%

Details on Gleason patterns, scores, and grading groups can be found in Rice-Stitt et al.9 AUC=area under the receiver operating characteristic curve. ASAP=atypical small 
acinar proliferation. *The same tissue microarray was used in these studies. †The current study is the only study to assess perineural invasion. 

Table 3: Performance of algorithms in detection and grading of prostate cancer
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establishing a standardised file format—eg, Digital 
Imaging and Communications in Medicine—is war­
ranted. We also show here that the algorithm calibration 
to a new laboratory requires a set of only around 30 cases. 
In fact, future versions of the algorithm incorporating 
additional training sets are underway, including a total of 
four different scanners and ten different laboratories, 
ultimately eliminating the need for calibration altogether. 
Finally, our approach to annotations enabled us to reach 
high accuracy with only three CNNs, as opposed to other 
published studies using a large number of CNNs, ren­
dering their deployment impractical in terms of hardware 
and run-time requirements. From a throughput per­
spective, the system deployed in Maccabi analyses many 
slides per hour, keeping up with the rate at which slides 
are scanned.

In summary, we report the development, external 
clinical validation, and deployment in routine practice of 
an AI-based algorithm to detect, grade, and evaluate 
additional clinically relevant tumour features in digitised 
slides of prostate CNBs. These data suggest that this AI-
based algorithm could be used as a tool to automate 
screening of prostate CNBs for primary diagnosis, assess 
signed-out cases for quality control purposes, and stand­
ardise reporting to improve patient management. Studies 
reporting on deployment in additional laboratories and 
associated clinical utility are underway.
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